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Abstract—We consider the problem of constructing a single spanning tree for the single-sink buy-at-bulk network design problem for

doubling-dimension graphs. We compute a spanning tree to route a set of demands along a graph G to or from a designated sink node.

The demands could be aggregated at (or symmetrically distributed to) intermediate edges where the fusion cost is specified by a

nonnegative concave function f. We describe a novel approach for developing an oblivious spanning tree in the sense that it is

independent of the number and location of data sources (or demands) and cost function at the edges. We present a deterministic,

polynomial-time algorithm for constructing a spanning tree in low doubling-dimension graphs that guarantees a log3 D-approximation

over the optimal cost, where D is the diameter of the graph G. With a constant fusion-cost function, our spanning tree gives an

Oðlog3 DÞ-approximation for every Steiner tree that includes the sink. We also provide a �ðlognÞ lower bound for any oblivious tree in

low doubling-dimension graphs. To our knowledge, this is the first paper to propose a single spanning tree solution to the single-sink

buy-at-bulk network design problem (as opposed to multiple overlay trees).

Index Terms—Spanning tree, buy-at-bulk, network design, approximation algorithm, doubling-dimension graph, data fusion, data

structure.
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1 INTRODUCTION

A typical client-server model has many clients and one
server where a subset of the client set wishes to route a

certain amount of data to the server at any given time. The
set of clients and the server are assumed to be geographi-
cally far apart. To enable communication among them,
there needs to be a network of cables deployed. Moreover,
the deployment of network cables has to be of minimum
cost that also minimizes the communication cost among the
various network components. This is what we roughly call a
typical network design problem. The same problem can be
easily applied to many similar practical scenarios such as
oil/gas pipelines and telephone network.

The “Buy-at-Bulk” network design considers the econo-

mies of scale into account. As observed in [2], in a

telecommunication network, bandwidth on a link can be

purchased in some discrete units u1 < u2 < � � � < un with

costs c1 < c2 < � � � < cn, respectively. The economies of scale

exhibit the property where the cost per bandwidth

decreases as the number of units purchased increases:

c1=u1 > c2=u2 > � � � > cn=un. This property is the reason

why network capacity is bought/sold in “wholesale,” or

why vendors provide “volume discount.”
There are different variants of buy-at-bulk network design

problems that arise in practice. One of them is “single-sink

buy-at-bulk” (SSBB) network design. This SSBB problem has

a single “destination” node where all the demands from

other nodes have to be routed to. Typically, the demand
flows are in discrete units and are unsplittable (indivisible),
i.e., the flow follows a single path from the demand node to
the destination. These problems are often called “discrete
cost network optimization” in operations research.

As mentioned in [3], if information flows from x different
sources over a link, then the cost of total information that is
transmitted over that link is proportional to fðxÞ, where
f : ZZþ ! IRþ. The function f is called a canonical fusion
function if it is concave, nondecreasing, fð0Þ ¼ 0, and has the
subadditive property fðx1 þ x2Þ � fðx1Þ þ fðx2Þ, 8x1, x2,
ðx1 þ x2Þ 2 ZZþ. Generally, SSBB problems use the subaddi-
tive property to ensure that the “size” of the aggregated data
is smaller than the sum of the sizes of individual data. If the
set of demand nodes is known in advance and f is constant,
then this is a well-known Steiner tree problem.

We study the oblivious single-sink buy-at-bulk network
design problem with the following constraints: an unknown
number of source (or demand) nodes and an unknown
concave transportation cost function f . An abstraction of this
problem can be found in many applications, one of which is
data fusion in wireless sensor networks where constraints
such as the number and location of source nodes are
assumed unknown or vary over time. Others include design
of VLSI power circuitry, Transportation and Logistics (rail-
road, water, oil, gas pipeline construction), etc. For simpli-
city, we consider data fusion problems in communication
networks. Our solution holds for both data distribution and
aggregation problems in doubling-dimension graphs. In-
formally, a graph has doubling dimension �, if there is a
smallest � such that for every radius r > 0, every ball of
radius 2r can be covered by at most 2� balls of radius r. When
� is small (constant), the graph is of low doubling dimension.

Doubling-dimension graphs have been used in many
different contexts including compact routing in wired
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networks [4], [5], [6], hierarchical routing and low-diameter
networks [7], [8], traveling salesman, navigability and
problems related to modeling the structural properties of
the Internet distance matrix for distance estimation [9], [10].
As noted in [11], it has become a key concept to measure the
ability of networks to support efficient algorithms or to
realize specific tasks efficiently. For wireless networks, this
concept has found many uses in solving many distributed
communication problems [12], distributed resource man-
agement [13], information exchange among producers and
consumers [14], and for determining other performance
qualities such as energy conservation in wireless sensor
networks [15].

1.1 Problem Statement

Assume that we are given a weighted graph G ¼ ðV ;E;wÞ,
with edge weights w : E �! IR�1, with a sink s 2 V . We
denote we to be the weight of edge e. Let A ¼ fv1; v2; . . . ; vdg,
A � V be the set of demand nodes. Let each node vi 2 A
have a nonnegative unit demand. A demand from vi
induces a unit of flow to sink s and this flow is unsplittable.
The demands from various demand nodes have to be sent
to the destination node s possibly routed through multiple
edges in the graph G. This forms a set of paths
P ðAÞ ¼ fpðv1Þ; pðv2Þ; . . . ; pðvdÞg, where pðviÞ is the path from
vi 2 A to s. The output for a given graph G, sink s, and a set
of demand nodes A is a set of paths P from the nodes in A
to s. We seek to find such a set of paths with minimal cost
with respect to a cost function described below.

There is an arbitrary concave fusion-cost function f at
every edge where data aggregate. This f is the same for all
the edges in G. Let pðvÞ be the path taken by a flow from v to
s in G. Let ’eðAÞ : fpðvÞ : e 2 pðvÞ ^ v 2 Ag denote the set of
paths originating from nodes in A that use an edge e 2 E.
Then, we define the cost of an edge e to be CeðAÞ ¼
fðj’eðAÞjÞ � we. The total cost of the set of paths is defined to
be CðAÞ ¼

P
e CeðAÞ.

For a given set A of demand nodes in G, the correspond-
ing set of paths P ðAÞ would incur a total cost denoted by
CðAÞ. For this set A, there is an optimal set of paths P �ðAÞ
with respect to the total cost denoted by C�ðAÞ. The
competitive ratio for the cost of these two sets of paths is
given by CðAÞ

C�ðAÞ .
The oblivious case arises when we do not know the set of

demand nodes in advance. So, given a graph G ¼ ðV ;EÞ
with sink s 2 V , an oblivious algorithm, Aobl, must compute
a set of paths P ðV Þ which induces P ðAÞ for any set A � V .
The competitive ratio of this oblivious algorithm is given by

C:R:ðAoblÞ ¼ max
A�V

CðAÞ
C�ðAÞ :

We aim to find an oblivious algorithm that minimizes the
above competitive ratio. We note that SSBB is NP-Hard as
the Steiner tree problem is a special of case of SSBB (when
fðxÞ ¼ 1) [16].

1.2 Contribution

We seek to find a spanning tree T rooted at sink s for any
doubling-dimension graph G. The spanning tree T we build
produces a set of unique paths P ðV Þ from 8v 2 V to the

sink s. This T is oblivious since it is independent of the data
sources, and can accommodate any canonical fusion-cost
function. Our approach gives a deterministic, polynomial-
time algorithm that guarantees Oð217� log3 DÞ competitive
ratio for graphs with doubling dimension �. Therefore, for
low doubling-dimension graphs, we obtain an Oðlog3 DÞ
competitive ratio. When fð�Þ ¼ c, a constant, our spanning
tree solution provides an Oðlog3 DÞ-approximation to any
Steiner tree that contains the sink s. To our knowledge,
these are the first spanning tree solutions to the oblivious
SSBB problem and also for the oblivious Steiner tree
problem. We also give a lower bound in n� n grids for
the competitive ratio for any oblivious SSBB spanning
tree T to be of �ðlognÞ.

It is well known in the research community that tree
structures provide a very efficient solution for managing
data dissemination and aggregation in large-scale distrib-
uted systems. Prominent architectures like the content-
based publish subscribe, peer-to-peer communication,
muticasting, etc., take advantage of efficient routing in
trees and distributed maintenance of the tables in each node
of the network.

The motivation for us to build a spanning tree not only
comes from the above mentioned advantages and current
use, but also because of the fact that it has the most compact
form of data structure in the sense that they have the
minimum number of edges connecting all the nodes ðn� 1Þ.
Furthermore, their inherent acyclic property conveniently
avoids inefficient use of the network due to unnecessary
cyclic data traversal and hence avoids increased costs. Since
there are no routing loops formed during the tree
construction, any design of routing algorithms on trees is
greatly simplified.

We build a spanning tree based on the following
technique. We partition the nodes in a hierarchical fashion.
The selection of nodes for a given “level” of hierarchy is
based on finding d-independent nodes, where d is propor-
tional to that level. Nodes of successive levels are connected
by bounded length paths. The intersecting paths that may
potentially form cycles are appropriately modified to result
in a spanning tree. A modified spanning tree is built from
the spanning tree to ensure that all paths have appropriate
end nodes. Analysis is done on this modified tree.

To demonstrate the basic techniques and concepts, we
initially build an overlay tree and produce a logD compe-
titive ratio. An overlay tree is a tree where each edge in the
tree could be a path in the underlying physical infrastruc-
ture. Shortest paths in an overlay tree, when projected to its
underlying network, could have several intersections lead-
ing to cycles. Our initial overlay tree construction and
analysis give an insight for the analysis of the spanning tree
that we build subsequently. Since the overlay tree may result
in having cycles, our main algorithm for constructing a
spanning tree extends the overlay tree algorithm to obtain a
competitive ratio of Oðlog3 DÞ.

We perform simulation to compare the cost of the
spanning tree with trees from several prior related work
and a few well-known trees (Minimum Spanning Tree
(MST) and Shortest-Paths Tree (SPT)). For comparison, we
generate the trees and costs by simulation using NetworkX
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[17]. The simulations corroborate the analytical results and
show that the oblivious spanning tree (OST) provides very
competitive costs and in fact provides better costs than the
well-known trees.

1.3 Related Work

1.3.1 Non-Oblivious SSBB

There has been a lot of research work in the area of
approximation algorithms for network design. Since net-
work design problems have several variants with several
constraints, only a partial list has been mentioned in the
following paragraphs.

SSBB problems have been primarily considered in both
Operations Research and Computer Science literatures in
the context of flows with concave costs. SSBB problem was
first introduced by Salman et al. [16]. They presented an
OðlognÞ-approximation for SSBB in euclidean graphs by
applying the method of Mansour and Peleg [18]. Bartal’s
tree embeddings [19] can be used to improve their ratio to
Oðlogn log lognÞ. An Oðlog2 nÞ-approximation was given by
Awerbuch and Azar [20] for graphs with general metric
spaces. Bartal [21] further improved this result to OðlognÞ.
Guha et al. [22] provided the first constant factor approx-
imation to the problem, whose ratio was estimated to be
around 9,000 by Talwar [23].

Some other special cases of the problem have also constant
factor approximations. Algorithms by Kumar et al. [24] and
Gupta et al. [25] provide constant factor approximation
algorithms for the rent-or-buy variation of the problem. They
provide a 76.8-approximation algorithm for the splittable-
SSBB problem. Talwar [23] proposed an LP rounding
approach for the SSBB problem with an approximation ratio
of 216. Jothi and Raghavachari [26] provide an improvement
over Talwar’s with a 145.6-approximation and guaranteeing
that each flow follows a single path to the sink. Their work
also proposes a technique for the splittable-flow SSBB
problem which reduces the previous best ratio of 72.8 to

�K which is less than 65.49 for all K-types of cables (each
type has a specified capacity and cost per unit length).

Another variant is the “capacitated” buy-at-bulk network
design problem where each edge (link) of the network has an
upper bound on the amount of demand flows it can route
through it. This problem is otherwise known as network
loading problem. Many heuristic and branch-cut approaches
have been used to solve such problems. Frangioni and
Gendron [27] show that a nontrivial 0-1 reformulation of the
Multicommodity Network Design (MCND) provides the
same LP bound obtained by adding exponentially many
residual capacity inequalities to the LP relaxation of the
general integer formulation. Gendron et al. [28] provide a
survey of methods that solve MCND, particularly through
LP relaxations. The methods highlighted are the simplex-
based cutting plane algorithms, Lagrangian relaxation, and
heuristics. Öncan [29] provides a fast approximate reasoning
algorithm, which is based on the Esau-Williams savings
heuristic and fuzzy logic rules to solve this problem.

1.3.2 Oblivious SSBB

Below, we present the related work in oblivious SSBB and
Table 1 summarizes most of these results and compares our
work with their’s. What distinguishes our work with the
others’ is the fact that we provide a spanning tree while
others provide an overlay tree that may have cycles.

Goel and Estrin [3] build an overlay tree on a graph
that satisfies the triangle inequality. Their technique is
based on a maximum matching algorithm that guarantees
ð1þ log kÞ-approximation, where k is the number of
sources. Their solution is oblivious with respect to the
fusion-cost function f . An overlay tree, if projected to a
graph, may not be a tree (could have cycles). In a related
paper [32], Goel and Post construct (in polynomial time) a
set of overlay trees from a given general graph such that
the expected cost of a tree for any f is within an Oð1Þ-
factor of the optimum cost for that f .

702 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 5, MAY 2012

TABLE 1
Our Results and Comparison with Previous Results for Data-Fusion Schemes

n is the total number of nodes in the topology, k is the total number of source nodes. Note that our work gives a spanning tree and others provide an
overlay tree that may have cycles.



Jia et al. [30] build a Group Independent Spanning Tree
(GIST) Algorithm that constructs an overlay tree for
randomly deployed nodes in a euclidean two-dimensional
plane. The tree (that is oblivious to the number of data
sources) simultaneously achieves OðlognÞ-approximate fu-
sion cost and Oð1Þ-approximate delay. However, their
solution assumes a constant fusion-cost function. We
summarize and compare the related work in Table 1.

Jia et al. [31] provide approximation algorithms for TSP,
Steiner Tree, and set cover problems. They present a
polynomial-time ðOðlogðnÞÞ; OðlogðnÞÞÞ-partition scheme
for general metric spaces. An improved partition scheme
for doubling metric spaces is also presented that incorpo-
rates constant-dimensional euclidean spaces and growth-
restricted metric spaces. The authors present a polynomial-
time algorithm for Universal Steiner Tree (UST) that
achieves polylogarithmic stretch with an approximation
guarantee of Oðlog4 n= log logðnÞÞ for arbitrary metrics and
derive a logarithmic stretch, OðlogðnÞÞ for any doubling,
euclidean, or growth-restricted metric space over n vertices.

Gupta et al. [33] develop a framework to model oblivious
network design problems and give algorithms with poly-
logarithmic competitive ratio. They develop oblivious
algorithms that approximately minimize the total cost of
routing with the knowledge of aggregation function, the
class of load on each edge, and nothing else about the state
of the network. Their results show that if the aggregation
function is summation, their algorithm provides an
Oðlog2 nÞ competitive ratio and when the aggregation
function is max, the competitive ratio is Oðlog2 n log lognÞ.
The authors claim to provide a deterministic solution by
derandomizing their approach. But, the complexity of this
derandomizing process is unclear.

Chuzhoy et al. [34] consider the Fixed Charge Network
Flow (FCNF) problem and show that this problem and
several other basic network design problems cannot be
approximated better than �ðlog lognÞ unless NP �
DTIMEðnOðlog log lognÞÞ. They show that this inapproxim-
ability threshold holds for the Priority-Steiner Tree pro-
blem, single-sink Cost-Distance problem, and the single-
sink FCNF problem.

A lower bound for the summation aggregation function
is provided in the online Steiner tree problem by Imase and
Waxman [35]. This provides a �ðlognÞ competitive ratio for
planar graphs. However, the specific planar graph they
used is not of low doubling dimension. For this reason, we
provide an alternative lower bound for low doubling
graphs, in particular for two-dimensional grids.

1.4 Organization

In the next section, we present some definitions and notations
used throughout the rest of the paper. Section 3 provides the
description and analysis of an overlay tree which will be
useful for the analysis of the spanning tree that we build later.
In Section 4, we describe a spanning tree algorithm. Section 5
contains the modified spanning tree construction algorithm.
Section 6 provides the analysis of the modified spanning tree
as well as the main theorem of this paper. Section 7 discusses
the lower bound analysis. In Section 8, we briefly describe
our simulation results comparing our tree with several well-
known trees. Finally, we discuss our contribution and future
work in Section 9.

2 DEFINITIONS

Consider a weighted graph G ¼ ðV ;E;wÞ, w : E �! IR�1.
Let s 2 V be the sink node. For any two nodes u, v 2 V , let
distðu; vÞ denote the distance between u; v (measured as the
total weight of the shortest path that connects u and v).
Given a subset V 0 � V , we denote distðu; V 0Þ the smallest
distance between u and any node in V 0. Let D denote the
diameter of G, that is, D ¼ maxu;v2V distðu; vÞ. For any path p
denote its length (number of edges) as jpj.

A set of nodes I is said to be a d-independent set if for each
pair u; v 2 I, u 6¼ v, distðu; vÞ � d. Given a set of nodes H �
V and parameter d, we define Maximal Independent Set of G
for distance d as I ¼MISðG;H; dÞ to be an arbitrary maximal
d-independent set of nodes in G such that H � I. Note that,
to begin with, the nodes in the given set H must also be
d-independent. MISðG;H; dÞ can be constructed in poly-
nomial time with a simple greedy algorithm.

Given a graph G ¼ ðV ;EÞ, the r-neighborhood of any
vertex u 2 V denoted Nðu; rÞ, is defined as the set of nodes
whose distance is at most r from u; namely, Nðu; rÞ ¼
fvjdistðu; vÞ � rg. The r-neighborhood of a set of vertices
V 0 2 V denoted by NðV 0; rÞ, is defined as the set of nodes
whose distance is at most r from any node in v0. We adapt the
definition of doubling-dimension graph from [36] and [37].

Definition 2.1 (Doubling Dimension of a Graph). The
doubling dimension of a graph G is the smallest � such that
every r-neighborhood is a subset of the union of at most 2� sets
of r=2-neighborhoods. If � is constant, then we say that G is of
low doubling dimension.

Observation 2.2. For a graph with doubling dimension �, any
1-neighborhood contains at most 2� nodes. Any 2k-neighbor-
hood, can be covered by at most 2ðk�lÞ� number of
2l-neighborhoods, where k � l � 0.

Lemma 2.3. In any 2k-neighborhood, the size of any 2l-
independent set of nodes does not exceed 2ðk�lþ3Þ�, where
k � l � 0.

Proof. Let U be 2k-neighborhood of a node v. Let I be a 2l-
independent set of nodes in the 2k-neighborhood of a
node v. If 0 � l � 2, then jIj � jUj � 2ðkþ1Þ� � 2ðk�lþ3Þ�

(from Observation 2.2). If, l � 3, from Observation 2.2,
U can be covered by at most 2ðk�lþ3Þ� number of 2l�3-
neighborhoods. Therefore, we have that jIj � 2ðk�lþ3Þ�.tu

3 OVERLAY TREE

We describe how to construct an overlay tree from a
connected graph G ¼ ðV ;EÞ. This will be useful for the
design and analysis of the spanning tree algorithm.

The overlay tree T ¼ ðVT ; ET Þ is built as follows: let
� ¼ dlogDe, where D is the diameter of graph G. The
overlay tree T consists of �þ 1 levels of node sets,
VT ¼ I0 [ � � � [ I�, which are selected in a top-down manner.
The root of T is s and I� ¼ fsg. Given Iiþ1, we define
Ii ¼MISðG; Iiþ1; 2

iÞ. The leaves of T are all the nodes in G,
namely, I0 ¼ V . Members of Ii are also called leaders at level
i. Note that some leaders could belong to multiple levels
(e.g., the sink s is a member of all levels). For any node
u 2 Ii, i < �, its parent in T is chosen to be a leader in
Iiþ1 \Nðu; 2iþ2 � 2Þ which is closest to s (a parent is
guaranteed to exist due to the maximal independent set
property of Iiþ1).
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For every edge ðu; vÞ 2 ET , where u 2 Ii and v 2 Iiþ1, we
select one of the shortest paths from u to v to be the designated

path from u to v to represent edge ðu; vÞ. In case u ¼ v, the
designated shortest path has length zero. For any node v, the
tree T defines a unique path qðvÞ ¼ ðe0; e1; . . . ; e��1Þ 2 T from
the leaf v to the root s. The path qðvÞ is translated to a unique
path pðvÞ ¼ ðp0ðvÞ; p1ðvÞ; . . . ; p��1ðvÞÞ from v to s in G by

replacing each edge ei 2 qðvÞ with the respective designated
shortest path piðvÞ. We will refer to piðvÞ as the layer-i subpath

of pðvÞ.

3.1 Basic Properties of Overlay Tree

For each node u 2 Ii, let Zui denote all the leaves in T which
appear in the subtree of T rooted at u at level i. The overlay
tree T naturally defines a hierarchical partition of G because
for any v 6¼ u, Zu

i 6¼ Zv
i and for all y 2 G, y 2 Zxi for any x.

We will use the following parameters for the analysis of

overlay trees. Please note that the same set of parameters
with appropriately modified values will be later used in
Section 6 for the modified tree analysis.

�i ¼ 2iþ2==upper bound on jpiðuÞj
�i ¼ 2iþ2 ==upper bound on the radius of Zu

i

�i ¼ 2i==lower bound on dist ðs; Zui Þ; u 6¼ s
�i ¼ 2�i þ 2�i ==coloring radius

	 ¼ 27�==coloring of Ii with radius �i:

For each path piðvÞ, we have jpiðvÞj � 2iþ2 � 2 < �i, and
hence, we obtain

Observation 3.1. For any node v 2 V , jpiðvÞj < �i.

Lemma 3.2. For any v 2 Zui , distðv; uÞ < �i.

Proof. Let p0ðvÞ ¼ ðp0ðvÞ; p1ðvÞ; . . . ; pi�1ðvÞÞ be the respec-
tive path in the overlay tree from v to u. From
Observation 3.1, jpjðvÞj < �j ¼ 2jþ2. Thus, jp0ðvÞj ¼Pi�1

j¼0 jpjðvÞj <
Pi�1

j¼0 2jþ2 < 2iþ2 ¼ �i. tu
Lemma 3.3. Nðs; 2i � 1Þ � Zs

i .

Proof. Consider a node v 2 Zsi , with v 6¼ s. Suppose that
v 2 Ij, where j < i. Let ‘jþ1 denote the parent of v.
According to the parent selection criterion, ‘jþ1 2
Ijþ1 \Nðv; 2jþ2 � 2Þ and ‘jþ1 is closest to s.

We f irs t show that i f v 2 Nðs; 2i � 1Þ, then
‘jþ1 2 Nðs; 2i � 1Þ. We only need to show that B ¼
Ijþ1 \Nðs; 2i � 1Þ 6¼ ;. Let rv denote the shortest path
from v to s. If jrvj � 2jþ2 � 2, then s 2 B, and B 6¼ ;.
Suppose that jrvj > 2jþ2 � 2. Take a node x 2 rv such that
distðx; vÞ ¼ 2jþ1 � 1. Let rx denote the subpath of rv from
x to s. If we consider a neighborhood Nðx; 2jþ1 � 1Þ,
then, there is a node y 2 Ijþ1 such that y 2 Nðx; 2jþ1 � 1Þ
and distðx; yÞ � 2jþ1 � 1. Let ry denote the shortest path
from y to s. We have that jryj � jrxj þ 2jþ1 � 1 ¼ jrvj.
Consequently, y 2 B, and B 6¼ ;.

We can easily see that if v 2 Ii�1 and v 2 Nðs; 2i � 1Þ,
then the parent of v is s, and thus v 2 Zsi . Using an
induction on j ¼ i� 1; . . . ; 0, we obtain that if v 2 Ij and
v 2 Nðs; 2i � 1Þ, then v 2 Zsi . Consequently, when we
consider j ¼ 0, we obtain that Nðs; 2i � 1Þ � Zs

i . tu

From Lemma 3.3, we obtain the following corollary:

Corollary 3.4. For any u 2 Ii, u 6¼ s, distðs; Zui Þ � �i.

Let Xi ¼ ðIi; EXi
Þ, be a graph such that for any two

u; v 2 Ii, ðu; vÞ 2 EXi
if and only if distðu; vÞ � �i.

Lemma 3.5. Graph Xi admits a vertex coloring with at most
	 colors.

Proof. Let v 2 Ii. The nodes adjacent to v in Ii are the set
Y ¼ Nðv; �iÞ \ Ii. Since Ii is a 2i-independent set, and
�i ¼ 2�i þ 2�i ¼ 2iþ3 þ 2iþ1 � 2iþ4, from Lemma 2.3, we
obtain jY j � 2ððiþ4Þ�iþ3Þ� ¼ 27�. Consequently, graph Xi

has degree at most 27� � 1, and by a greedy algorithm, it
can be colored with at most 	 ¼ 27� colors. tu

3.2 Competitive Analysis of Overlay Tree

Let A � V denote an arbitrary set of source nodes. Let C�ðAÞ
denote the cost of the of the optimal path set from A to s. Let
CðAÞ denote the cost of the paths given by the overlay tree T .
We will bound the competitive ratio CðAÞ=C�ðAÞ.

The cost CðAÞ can be bounded as a summation of costs
from the different layers as follows: for any edge e, let
’e;iðAÞ ¼ fpiðvÞ : ðv 2 AÞ ^ ðe 2 piðvÞÞg be the set of layer-i
subpaths that use edge e. Recall that the fusion-cost function
f : ZZþ ! IRþ is concave, nondecreasing, and has the sub-
additive property fðx1 þ x2Þ � fðx1Þ þ fðx2Þ, 8x1; x2; ðx1 þ
x2Þ 2 ZZþ where fð0Þ ¼ 0. Denote by Ce;iðAÞ ¼ fðj’e;iðAÞjÞ �
we the cost on the edge e incurred by the level-i subpaths.
Since f is subadditive, we get CeðAÞ �

P��1
i¼0 Ce;iðAÞ. Let

CiðAÞ ¼
P

e2E Ce;iðAÞ denote the cost incurred by the layer-i
subpaths. Since CðAÞ ¼

P
e2E CeðAÞ, we have that

CðAÞ �
X��1

i¼0

CiðAÞ: ð1Þ

Let Au
i ¼ A \ Zu

i . We obtain the following lower bound
on C�ðAÞ:
Lemma 3.6. For any �i-independent set I 0 � Ii, C�ðAÞ � RðI 0Þ,

where RðI 0Þ ¼
P

u2I 0ns fðjAu
i jÞ � �i.

Proof. From Lemma 3.2, any node in Au
i is at distance at

most �i � 1 from u. Since any pair u; v 2 I 0 n fsg, u 6¼ v, is
at least �i ¼ 2�i þ 2�i distance apart, any two nodes x 2
Au
i and y 2 Av

i are at least 2�i distance apart. From
Corollary 3.4, s 62 NðAu

i ; �i � 1Þ. Let Y ðAu
i Þ be the set of

edges with one node in NðAu
i ; �i � 1Þ and the other

outside NðAu
i ; �i � 1Þ. The set Y ðAu

i Þ forms a cut that has
to be crossed by the paths in Au

i in order to reach s. The
smallest cost for crossing the cut is when the paths of Au

i

are combined through the fusion function f . Therefore,
each path from Au

i requires length at least �i in order to
reach s. Thus, we have that the optimal cost of sending
the demands from Au

i to s is at least fðjAu
i jÞ � �i. Since for

each u 2 I 0 n s, the respective cuts are disjoint, we obtain:
C�ðAÞ �

P
u2I 0ns fðjAu

i jÞ � �i. tu
Lemma 3.7. CiðAÞ � Qi, where Qi ¼

P
u2Iinfsg fðjA

u
i jÞ � �i.

Proof. Note that ’e;iðAÞ ¼
S
u2Ii ’e;iðA

u
i Þ. Since f is sub-

additive, for any edge e,

Ce;iðAÞ ¼ fðj’e;iðAÞjÞ � we �
X

u2Ii
fðj’e;iðAu

i ÞjÞ � we:
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Since for e 2 piðuÞ, j’e;iðAu
i Þj ¼ jAu

i j, and for e 62 piðuÞ,
j’e;iðAu

i Þj ¼ 0, using Observation 3.1, we obtain

CiðAÞ �
X

u2Ii
fðjAu

i ÞjÞ � jpiðuÞj �
X

u2Iinfsg
fðjAu

i ÞjÞ � �i:

ut

Lemma 3.8. CiðAÞ � C�ðAÞ � 	 � �i=�i.
Proof. From Lemma 3.5, graph Xi accepts a vertex coloring

with at most 	 colors. Let Iji denote the set of nodes of

Xi which receive color j 2 � ¼ f1; . . . ; 	g. Note that

Ii ¼
P

j2� I
j
i , and Iji \ Iki ¼ ; for any j 6¼ k. Le t

Qj
i ¼

P
u2Iji nfsg

fðjAu
i jÞ � �i. We have that Qi ¼

P
j2� Q

j
i .

Let Qj�

i ¼ maxj2�Q
j
i . Thus, Qi � j�j �Qj�

i � 	 �Q
j�

i . From

Lemma 3.7, we have that CiðAÞ � Qi � 	 �Qj�

i . Further,

from Lemma 3.6, C�ðAÞ � RðIj
�

i Þ ¼ Q
j�

i � �i=�i. Conse-

quently, CiðAÞ � C�ðAÞ � 	 � �i=�i. tu
Since A is chosen arbitrarily, the following theorem

follows immediately from (1) and Lemma 3.8:

Theorem 3.9 (Oblivious Competitive Ratio of Overlay

Tree). The oblivious competitive ratio of the overlay tree T is
C:R:ðT Þ � 	 � ð1þ logDÞ �maxif�i=�ig.

From Theorem 3.9, we immediately obtain the following
corollary when we replace the values of the parameters.

Corollary 3.10. The oblivious competitive ratio of the overlay
tree T is C:R:ðT Þ ¼ Oð27� � logDÞ.

4 SPANNING TREE CONSTRUCTION

We start with an informal description of the construction of
the spanning tree. We build the tree in a hierarchical
manner that has � ¼ OðlogDÞ levels. A formal description
appears in Algorithm 1. The terms and notations used here
are the same as defined for the overlay tree construction.

The construction of the hierarchical levels of indepen-
dent nodes is top down. Ii is computed by MISðG; Iiþ1; 2

iÞ,
for 0 � i � �� 1. Ii will contain all the 2j-independent
nodes of higher levels j, i < j � � as well as a 2i-
independent set of nodes. We enforce the constraint that
s 2 Ii for every Ii. Note that each node v 2 Ii n Iiþ1 has to be
within distance 2iþ2 � 2 to at least one node in Iiþ1

(otherwise, v must be a member of Iiþ1).
Paths are also constructed in a top-down fashion. The

path from any level i, denoted piðvÞ, starts at some leader v
at level i and ends at a leader at level iþ 1. The set of all
paths at level i is denoted as Pi and the set of all paths of all
levels is denoted by P ¼ fP��1; P��2; . . . ; P2; P1; P0g. The
path computation is detailed in the function FindPath.

The main objective of FindPath function is to ensure
that any node u at level i is in Nðs; 2i � 1Þ and that all the
nodes in that neighborhood fall inside the subtree Zsi
rooted at s at level i. The function FindPath enforces
this condition by computing paths that have the following
properties:

1. If there is a node u at level i � jþ 3, a shortest path
to s is directly built.

2. If there is a node u at level i > jþ 3 and is close to a
fixed ring rk, then it finds an ðiþ 1Þ-level leader
inside the ð2k � 1Þ-ring. Once a leader is chosen, a
special path piðuÞ is built from u to ‘iþ1. Path piðuÞ is
built such that for each node v 6¼ u on piðuÞ,
distðv; sÞ � distðu; sÞ. The existence of such a leader
‘iþ1 is guaranteed.

The Function FindPath ensures that if path piðuÞ
crosses a fixed ring rk, then the path does not cross back
and goes outside rk. In order to satisfy this property,
FindPath guarantees to find a leader inside rk. Hence, any
path from a node that is inside Nðs; 2i � 1Þ stays within that
neighborhood. This guarantees that Nðs; 2i � 1Þ � Zs

i . De-
tails are in Lemma 6.3.

When paths for all levels are built, the resulting structure
may not be a tree. It could result in a graph that might have
intersecting paths. Define regular paths as paths that do not
intersect any (higher level) path on their way to their end
nodes. The paths of P��1, are regular paths, since there were
no higher level paths to intersect and are included in Preg

��1.
Define pruned paths as those paths that intersect paths of

higher level. If a path piðvÞ intersects a path pjðv0Þ (j > i)
along its way to ‘iþ1, piðvÞ is pruned from the intersection
point to its destination. Such paths are included in Ppr

i . This
pruning of intersecting paths ensures the structural prop-
erty of a spanning tree (see Fig. 1).

Note that regular paths of the same level could intersect
and continue on different directions to reach a common
leader. In this case, one of the paths is modified to use the
same segment as the other after the intersection point.
Another scenario is when two paths (say from u and v of
level i) intersect at m and proceed to their respective end
nodes x and y. In this case, either v or u will choose a
common leader and appropriately modify its path. In both
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these scenarios, the resulting paths remain regular and
avoid cycles when they overlap. Note that in both the cases,
the path segments, after intersection, should have the same
length. We have not mentioned this aspect in Algorithm 1.

The spanning tree algorithm executes in polynomial time
with respect to the size of the graph.

5 MODIFIED TREE CONSTRUCTION

The pruned paths in the spanning tree T will not have
leaders as end nodes. To ensure that end nodes of all paths
are leaders, we modify T to T . The main goal is to merge
pruned paths to form longer paths whose end nodes are
leaders in some level. We then find “pseudoleaders” Ii
among the intermediate nodes in the merged paths that
serve as end nodes for these pruned paths.

We begin with an overview of the modified tree
construction. We construct T from T by assigning alternate
leaders to those paths whose “upper” sections have been
pruned. We first begin by assigning levels to all the nodes of
regular paths by AssignLevels function in AssignLevels

and including those paths in T . Then, we begin a top-down,

level-by-level process where we “modify” the pruned paths

by extending the pruned paths to their newly assigned

alternate leaders. Note that a modified path could be a

concatenation of multiple pruned paths. Then, we assign

levels to the nodes of the recently modified path as well and

include this modified path in T . The end of this process

results in a modified tree T . A more formal description

appears in Algorithm 2 Modified Tree.

Define AssignLevelsðpiðvÞ; H; iÞ, where H is a pair

of end nodes of piðvÞ, to assign levels to all the nodes of

piðvÞ by identifying maximal independent nodes (exclud-

ing the end nodes of piðvÞ). This is given in more detail in

the function AssignLevels. Levels are assigned in the

range ði� 1Þ to 0. A modified path is connected to an

alternate leader called pseudoleader by the function Mod-

ifyPathðpiðuÞ; pjðvÞÞ which chooses the nearest level-ðiþ
1Þ node on pjðvÞ from the intersection point. The existence

of a pseudoleader in any given path pjðvÞ, j > i, is

justified by the Lemma 5.1.
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Lemma 5.1 (Presence of a Pseudoleader). The Mod-

ifyPathðpiðuÞ; pjðvÞÞ function guarantees selection of an

ðiþ 1Þ-level pseudoleader.

Proof. Suppose path piðuÞ intersects a higher level path pjðvÞ,
i < j. Let the start node of pi be u and let the end node of
pjðvÞ be w. Note that a path pjðvÞ goes from level j to level
jþ 1. There could be two cases for the presence of a
pseudoleader in pjðvÞ. If level ofw is iþ 1, thenw itself acts
as a pseudoleader for u. If level of w is greater than iþ 1,
then pjðvÞ must have some nodes (within its end nodes)
that have been assigned to level iþ 1 (by the Assign-

Levels function). Hence, in either case, a pseudoleader is
guaranteed to be found in pjðvÞ for u. tu

Consider that we are at some level i where 0 � i � �� 1

and suppose that there are several pruned paths in Pi. Let

piðuÞ 2 Pi be one such path and let y 2 pjðvÞ be the

intersection point, where j > i. A pseudoleader, v0, is chosen

on pjðvÞ using ModifyPath ðpiðuÞ; pjðvÞÞ in ModifyPath.

This pseudoleader is chosen in such a way that it is closer to

both s and y. Such a leader is always guaranteed to exist

because the connection from a pruned path occurs to a

modified path that has already elected new pseudoleaders

toward the direction of s. Note that this may alter Ij to Ij by

replacing the original leader by the pseudoleader. The path

piðuÞ is extended from y to v0 and this new extended path,

denoted by piðuÞ, replaces piðuÞ in the modified tree T . The

upper bound on the length of piðuÞ is given by Lemma 6.1.

Once a new path piðuÞ is established, all the nodes in it are

assigned levels using (AssignLevelsðpiðuÞ; H; iÞ), where

H is the set of end nodes of piðuÞ). This procedure of

modifying pruned paths, replacing the old pruned paths by

new, extended, modified paths, and assigning levels to all

nodes in those paths is repeated for all levels down to 0. The

resulting tree is a modified tree with normal leaders and

pseudoleaders for respective types of paths.
Fig. 1 gives an example of intersecting path and its

modification to reach a pseudoleader and form a modified

path. At level �� 2, we see there is a path from u to v. The

path from b0 to v0 intersects the former path at x. This path is

pruned from the point of intersection x till v0 and a new

connection is made from x to v, resulting in a new path from

b0 to v.

6 ANALYSIS OF MODIFIED TREE

We will analyze the performance of the modified tree T . The

analysis is similar to the analysis of the overlay tree in

Section 3. We will focus on finding in T the respective values

of the parameters �i, �i, �i, �i, and 	 given in Section 3.1.

With these values, we can immediately apply the results of

Section 3.2 to obtain a competitive ratio of T .
The modified tree T naturally defines a hierarchical

partition of G. This tree has � levels of pseudoleaders I0 to

I� ¼ s. For each node u 2 Ii, let Z
u

i denote all the leafs in T

which appear in the subtree of T rooted at u at level i. For

our analysis, we will use the following parameters:
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�i ¼ 2iþ3==upper bound on jpiðuÞj
�i ¼ 2iþ3==upper bound on the radius of Z

u

i

�i ¼ 2i==lower bound ondist ðs; Zu

i Þ; u 6¼ s
�i ¼ 2�i þ 2�i==coloring radius

	 ¼ 217� log2 D==coloring of Ii with radius �i:

A path pjiðvÞ could be intersected by multiple lower level
paths. Even though the leaders at a level i are sufficiently
far off, due to intersection by other paths, the leader at level
i might be close to many leaders of lower level paths.
However, the number of such leaders that are close is
limited. Lemmas 6.5, 6.6, and 6.7 establish the maximum
number of pseudoleaders in a given neighborhood.

Lemma 6.1. jpiðuÞj < �i.

Proof. Consider a path piðuÞ 2 T that starts at u 62 pjðvÞ,
ðj > iÞ, and intersects another path pjðvÞ at y 2 pjðvÞ.
Since piðuÞ is a pruned path, its length from u to the
intersection point y is at most 2iþ2 � 3 (if it was 2iþ2 � 2
or more, point y would have been its original leader).
ModifyPath will attempt to seek an ðiþ 1Þ-level node
(pseudoleader) on pjðvÞ that is close to y and in the
direction of s (Lemma 5.1). Note that y itself cannot be
the pseudoleader for u because, if it was, then piðuÞ
would not have been a pruned path. The distance from y
to a pseudoleader v0 on pjðvÞ would be at most 2iþ2 � 2
because if this distance was more than 2iþ2 � 2, we
would have found another pseudoleader v00 that is 2iþ1

distance away from v0 and closer to y. This is due to the
presence of ð2iþ1Þ-independent set nodes on this
path pjðvÞ computed by AssignLevels. Note that y
cannot be an end node of pjðvÞ and v0 could be one of the
end nodes of piðvÞ. Hence, the length of piðuÞ, denoted by
�i, could be at most ð2iþ2 � 3Þ þ ð2iþ2 � 2Þ < 2iþ3. Note
that pjðvÞ itself could be a stretched pruned path and the
upper bound holds irrespective of the length of pjðvÞ. tu

Lemma 6.2. For any v 2 Zui , distðv; uÞ < �i.

Proof. Consider a path piðvÞ 2 Z
u

i . In the worst case, this
path could be a concatenation of several modified paths,
ranging from level 0 to i� 1. The total length of piðvÞ
would be equal to the sum of maximum lengths of each
of those segments:

Pi�1
j¼0ð2iþ2Þ < 2iþ3. tu

Lemma 6.3. Nðs; 2i � 1Þ � Zs

i .

Proof. Consider a node v 2 Nðs; 2i � 1Þ, v 6¼ s. Suppose
that v 2 Ij, where j < i. Let ‘jþ1 denote the parent of v.
This parent ‘jþ1 could be a pseudoleader on a
modified path pjðvÞ.

We observe that all the nodes in Nðs; 2i � 1Þ use
internal special paths to s due to FindPath algorithm.
This is because a path from a node v to its leader is
always toward s. A pseudoleader ‘jþ1 for a modified
path can be found within 2ð2iþ2 � 2Þ distance from v
such that ‘jþ1 is within Nðs; 2i � 1Þ and closer to sink s,
due to Lemma 6.1. Since the pseudoleader of v is found
inside Nðs; 2i � 1Þ, v 2 Zs

i . By induction on j ¼ i �
1; . . . ; 0, we obtain that if v 2 Ij and v 2 Nðs; 2i � 1Þ,
then v 2 Zsi . Consequently, when we consider j ¼ 0, we
obtain that Nðs; 2i � 1Þ � Zs

i . tu

From Lemma 6.3, we obtain the following corollary:

Corollary 6.4. For any u 2 Ii, u 6¼ s, distðs; Zui Þ � �i.
Lemma 6.5 (Max Path Segments). The total number of path

segments pðvÞ 2 T at level i or higher that cross Nðx; 2iþ5Þ is
at most 210� � ð�� iþ 1Þ.

Proof. We know, by construction, that the length of a path
piþjðvÞ 2 T is at most 2iþj where 0 � j � ð�� iÞ and that
there is at most one leader ‘iþj 2 Ii within Nðx; 2iþj

2 Þ. Since
we are looking at the number of path segments piþjðvÞ
that go through Nðx; 2rÞ, where r ¼ iþ 5, consider a
large neighborhood Nðx; ð2iþj þ 2rÞÞ and determine the
number of neighborhoods of radius 2iþj

2 ; Nðx; 2iþj

2 Þ. If
r < ðiþ jÞ, then ð2iþj þ 2rÞ < 2 � 2iþj. From Lemma 2.3,
the number of path segments at level i or higher that
cross Nðx; 2rÞ is at most 2�ððiþjþ1Þ�ðiþj�1Þþ3Þ ¼ 25�. If
r � ðiþ jÞ, then ð2iþj þ 2rÞ < 2 � 2r ¼ 2rþ1. From Lem-
ma 2.3, the number of path segments at level i or higher
that cross Nðx; 2rÞ is at most 2�ððrþ1Þ�ðiþj�1Þþ3Þ ¼ 2�ðr�iþ5Þ.
Since r ¼ iþ 5, maxð24�; 2�ðr�iþ5ÞÞ ¼ maxð24�; 210�Þ ¼ 210�.
For all paths that span the levels from i to �, the total
number of path segments that cross Nðx; 2iþj�1Þ is equal
to 210� � ð�� iþ 1Þ. tu

Lemma 6.6 (Max Modified Paths in a Path Segment).
Consider a path segment pðvÞ 2 T that crosses Nðx; 2iþ5Þ. The
total number of modified paths pðvÞ 2 T at level i or higher that
use nodes in pðvÞ \Nðx; 2iþ5Þ is at most 27� � ð�� iþ 1Þ.

Proof. Let Q ¼ pðvÞ \Nðx; 2rÞ, where r ¼ iþ 5. From
Lemma 6.1, we know that the maximum length of any
modified path piþjðvÞ would be 2iþjþ3. To find the total
number of modified paths piþjðvÞ that passes through Q,
we consider a larger neighborhood Nðx; 2iþjþ3 þ 2rÞ and
find the number of Nðy; 2iþjþ3

2 Þ that would cover the
larger neighborhood. Note that each piþjðvÞ has start
node in Iiþj. If r < ðiþ jþ 3Þ, then ð2iþjþ3 þ 2rÞ <
2 � 2iþjþ3 ¼ 2iþjþ4. By Lemma 2.3, the number of path
segments at level i or higher that cross Nðx; 2rÞ is at most
2�ððiþjþ4Þ�ðiþjþ2Þþ3Þ ¼ 25�. I f r � ðiþ jþ 3Þ, t h e n
ð2iþjþ3 þ 2rÞ < 2 � 2r ¼ 2rþ1. From Lemma 2.3, the num-
ber of path segments at level i or higher that cross
Nðx; 2rÞ is at most 2�ððrþ1Þ�ðiþjþ2Þþ3Þ ¼ 2�ðr�iþ2Þ. We con-
sider maxð24�; 2�ðr�iþ2ÞÞ ¼ maxð24�; 27�Þ ¼ 27� for our ana-
lysis. Since j 2 ½0; ð�� iÞ	, the total number of paths that
would cross Nðx; 2iþjþ2Þ is equal to 27� � ð�� iþ 1Þ. tu

Lemma 6.7. The total number of pseudoleaders at level i, which
are inside Nðx; 2iþ5Þ is at most 217� � ð�� iþ 1Þ2.

Proof. From Lemma 6.5, there are 210� � ð�� iþ 1Þ path
segments piþjðvÞ 2 T , j � 0, crossing Nðx; 2rÞ, where
r ¼ iþ 5. From Lemma 6.6, each such path segment can
have multiple modified path segments at level i or higher
passing through it ð� 27� � ð�� iþ 1ÞÞ, the total number of
modified path segments that cross Nðx; 2rÞ would be at
most 217� � ð�� iþ 1Þ2. This gives also an upper bound to
the number of pseudoleaders at level i or higher. tu

Let Xi ¼ ðIi; EXi
Þ, be a graph such that for any two

u; v 2 Ii, ðu; vÞ 2 EXi
if and only if distðu; vÞ � �i.

Lemma 6.8. Graph Xi admits a vertex coloring with at most
	 ¼ 217� � ð�� iþ 1Þ2 colors.
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Proof. Let v 2 Ii. The nodes adjacent to v in Ii are the set
Y ¼ Nðv; �iÞ \ Ii. Since Ii is a 2i-independent set, and
�i ¼ 2�i þ 2�i � 2 � 2iþ3 þ 2 � 2i ¼ 2iþ4 þ 2iþ2 � 2iþ5. From
Lemma 6.7, we obtain jY j � 217� � ð�� iþ 1Þ2.

Consequently, graph Xi has degree at most
½217� � ð�� iþ 1Þ2	 � 1, and by a greedy algorithm, it
can be colored with at most 	 ¼ 217� � ð�� iþ 1Þ2 �
217� log2 D colors. tu

Now, the remaining part of the analysis identical to that
in Overlay Tree (3.2), where instead of the parameters �i, �i,
�i, �i, and 	, we use �i, �i, �i, �i, and 	. We derive the
competitive ratio of the modified tree as below.

Theorem 6.9 (Oblivious Competitive Ratio of Modified

Tree). The oblivious competitive ratio of the modified tree T is
C:R:ðT Þ � 	 � ð1þ logDÞ �maxif�i=�ig.

From Theorem 6.9, we immediately obtain the following
corollary when we replace the values of the parameters:

Corollary 6.10. The oblivious competitive ratio of the modified
tree T is C:R:ðT Þ ¼ Oð217� log3 DÞ.

7 LOWER BOUND

We now present an overview of the technique used for
computing the lower bound. The lower bound given by Imase
and Waxman [35] doesn’t work in our case. Their technique
works for nonlow doubling-dimension planar graphs. There-
fore, we give a new lower bound for the spanning tree
construction for low doubling-dimension graphs.

For our study, we consider a special class of planar
graphs commonly called grid graphs or lattice graphs. A
grid graph G is a euclidean n� n graph for some positive
integer n where the nodes are situated at each of the n2 grid
points. Any two vertices are connected by an edge if and
only if their euclidean distance is one unit and a node has at
most four neighbors. For example, see Fig. 4.

Let there be an arbitrary tree T that spans the grid
vertices. Assume that the root r of the tree T is one of the
corners of the grid. We compare the cost of a path from a set
of grid vertices to the root r to the cost of the tree path of
those vertices.

We show that there exists a vertical (or horizontal) line in
the grid that contains pairs of nodes whose distances in
T sum to 
ðn lognÞ, whereas, the shortest path along the
grid vertices would be �ðnÞ.

Define a Ux-Path as a path between any two adjacent
nodes in an n� n grid. Define a reference node to a Ux-Path
as one of its end nodes. All the distances in any Ux-Path will
be measured from its respective reference node.

A Ux-Path could extend at least x=2� 1 distance from its
reference node. A Ux-Path has the following properties:

1. The total length of the path is at least x� 1.
2. The Ux-Path has a node that is x=2 away from its

reference node. In other words, the path will
intersect a node in its x=2-radius from one of its
end nodes. Informally, we call it “width.”

Consider any two adjacent nodes u and v (with respect to
G) that form a Ux-Path. Let u be its reference node. Let there

be a node p 2 Ux-Path such that distðu; pÞ � x=2� 1. If the
vertical distance of node p from u is greater than or equal to
the horizontal distance of it from u, then we say that the
Ux-Path is vertical. Otherwise, it is horizontal. We shall refer
to such paths as V-Paths and H-Paths, respectively.

Lemma 7.1. In an x� x subgrid of G, there is at least one
Ux-Path in T with its end nodes in the perimeter of the
subgrid.

Proof. For contradiction, let us suppose that all the pairs of
nodes in the subgrid have a Ux-Path of length at most
x� 1. This formation will lead to two observations. The
center (a square of unit length) of the subgrid will not be
reached by any of the paths. This will result in a cycle.
This leads to a contradiction. Hence, there must be at
least one Ux-Path that is longer than x� 1. tu

Define an x-class to be a decomposition of G into
x� x subgrids where two adjacent subgrids share a
common edge. The number of such subgrids would be
n2=x2. There will be logn classes of such subgrids based on
the value of x, ð¼ n; n=2; n=4; . . . ; 1Þ.

Let Ux=2-Core be an x=2� x=2 subgrid centered within an
x� x subgrid of G as given in Fig. 2. We observe that the
Ux=2-Paths from adjacent node pairs along the perimeter of
the Ux=2-Core would extend either internally or externally
to a maximum distance (width) of x=4. The minimum
distance they would extend will be x=8.

Each x� x subgrid will have either an H-Path or a
V-Path in it, as shown in Fig. 3. This identifies the “type” of
that subgrid (namely, H-Type or V-Type). Consider a
certain x-class decomposition of G. There will be a mix of
H-Type and V-Type subgrids totaling n2=x2 subgrids that
constitutes this decomposition. If the number of H-Type
subgrids is larger (>n2=2x2) than the number of V-Type
subgrids, then we say that the x-class decomposition is of
type H. Otherwise, it is of type V. Therefore, out of the
logn classes of decomposition of G, some of them will be
“H-Type” and some will be “V-Type.” Without loss of
generality, assume that the majority is of H-Type.
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Fig. 2. Ux=2-Paths originating from an x=2� x=2 subgrid centered in an

x� x subgrid of G.



Consider an H-Type x-class ofG. Define x-width column as
one of the columns in G where G is divided into several
columns of width x. Consider a vertical line ‘ 2 G of length n.
This line will span n=x subgrids. Those n=x subgrids will
possibly be a mixture of H-Type and V-Type subgrids.
Observe that ‘ will intersect zero or more (�n=x) H-Paths
present in those subgrids. We say that ‘ is a “good vertical
line” for the x-class (GVLx) if it intersects a constant (n=2x)
number of H-Paths at a position less than or equal to 3=4th of
the “width” of those H-Paths measured from their respective
end nodes. The constraint associated with the intersection
point on the H-Path is to ensure that the length of the U-Path
from the intersection points still remains significantly long.

Lemma 7.2 gives the total number of GVLs in G. We
choose the one that intersects the largest number of H-Paths
(c1 is the largest among all) and refer to that line as GVL�x.
For each of the logn classes of subgrids, there will be a
respective GVL�x (or a GHL�x if the class is a V-Type).

Lemma 7.2. The total number of GVLs in an x-class of G is
3n=128.

Proof. Consider an H-Type x-class decomposition of G. The
“width” of any H-Path in a subgrid is at least x=8. Hence,
the number of vertical lines that can intersect such an
H-Path is x=8. But a GVL would intersect only within
3=4th of the width of any H-Path. On an average, in an
x-width column, there will be n

2x H-paths. And, by
pigeonhole principle, on an average, at least half of the
columns in G will have average number of H-Paths.
Therefore, the total number of GVLs in G for x-class will
be n

2x � 1
2 � x8 � 3

4 ¼ 3n
128 . tu

A GVL for a class n=2k will have 2k such pairs of vertices.
Each pair of these vertices forms an H-Path of length

ðn=2kÞ. Now, we shift our focus to finding one GVL for all
the logn classes. To find such a line, we first find GVLs for
all the individual classes n; n=2; n=4; . . . ; 1. We form an
overlay of all such GVLs and find the one that overlaps all
the classes. Such a GVL would be the line that would have
pairs of nodes that has U-paths of all the different lengths,
and each path would contribute a length of n.

Lemma 7.3. There is a GVL (denoted by GVL�) that is common
to a constant fraction of the total number of horizontal classes.

Proof. The number of classes that are of type H is at least
logn

2 . The number of GVLs in all the logn
2 classes will be

3n
128

logn
2 ¼

3n logn
256 . Therefore, the number of GVL�s that

overlaps a constant number of these classes would be
3n logn

256

n ¼
3 logn

256 . This proves the existence of at least one

GVL�. tu
Now, we are ready to present the central theorem of this

section.

Theorem 7.4. There exists a set S of nodes in G such that 1) S
constitutes 
ðnÞ nodes, 2) optimal tree T � for S has cost OðnÞ,
and 3) the induced subtree T ðSÞ has �ðn lognÞ cost.

Proof. From Lemma 7.3, we observe that GVL� crosses
H-Paths that belong to different (a constant number of)
x-classes. For an arbitrary class xi, it will have 
ðn=xiÞ
paths of length 
ðn=xiÞ. An example of this scenario
can be seen in Fig. 4. Since there will be a constant
number of classes (� logn=2) that belong to H-Type,
the total cost of the induced paths will be xiðn=xiÞ þ
xjðn=xjÞ þ � � � ¼ 
ðn lognÞ. Hence, the least cost along
the tree path would be �ðn lognÞ.

Note that there will be overlaps in the H-Paths from
different classes. An H-Path from an xi-class can contain
an H-Path from an xj-class where xi > xj. The overlaps
can go further such that an H-Path from an xi-class can
contain one or more H-Paths from classes that are smaller
than xi. In effect, the number of overlaps will halve the
number of H-paths of smaller classes and hence, the
effective path length is half of its contribution. tu
From Lemma 7.4, we obtain the following corollary:

Corollary 7.5. In any n� n grid, any spanning tree T will have
C:R:ðT Þ ¼ �ðlognÞ.

8 SIMULATION RESULTS

We simulated our algorithm, denoted by Oblivious Span-
ning Tree and compared its performance (fusion cost) with
GRID_GIST [30] and other common trees such as MST and
SPT. We used an n� n grid topology for our simulation
using NetworkX [17]. n� n grids are a special case of
doubling-dimension graphs and they fall under a variation
of the Steiner tree problem called “Rectilinear Steiner

710 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 5, MAY 2012

Fig. 4. Paths in an n� n grid.

Fig. 3. An example of a GVL in a grid where each x� x subgrid has

either an H-Path or a V-Path.



Problem” (RSP) where the tree structure has only vertical
and horizontal lines that interconnect all points and is
proved to be NP-Complete [38]. Since calculating a
minimum weight tree structure in an n x n grid topology
(a doubling-dimension graph) is essentially an RSP, the
problem we are addressing is NP-Hard.

We build a single spanning tree in a grid with n2 ¼
1;600 nodes. We simulate it for random sets of data
sources, up to 1,445, that are randomly placed. The random
data sets (of known size) are generated using Python’s
random sampling method without replacement from
the given population. Note that GRID_GIST is a special
algorithm designed for grids and ours is a generalized
algorithm. Hence, GRID_GIST performs slightly better than
OST (in Fig. 5).

9 CONCLUSIONS AND FUTURE WORK

We provide a spanning tree algorithm for a variant of the
single-sink buy-at-bulk network design problem in low
constant doubling-dimension graphs. Contrary to many
related works where the source-destination pairs were
already given, or when the source set was given, we
assumed the obliviousness of the set of source nodes.
Moreover, we considered an unknown fusion-cost function
at every edge of the tree. We presented nontrivial upper
and lower bounds for the cost of the set of paths in the
spanning tree. We have demonstrated that a simple,
deterministic, polynomial-time algorithm based on appro-
priately defined distance-based independent sets can
provide single spanning tree for data fusion. We have
shown that this algorithm guarantees ðlog3 DÞ-approxima-
tion. As part of our future work, we are looking into the
same problem on planar graphs, arbitrary graphs, and also
the general buy-at-bulk network design problem.
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